
Approximation Algorithms for Grammar-Based Compression

Eric Lehman Abhi Shelat
e lehman@mit.edu abhi@mit.edu

MIT Laboratory for Computer Science
200 Technology Square
Cambridge, MA 02141

Abstract

Several recently-proposed data compression algorithms
are based on the idea of representing a string by a
context-free grammar. Most of these algorithms are
known to be asymptotically optimal with respect to
a stationary ergodic source and to achieve a low re-
dundancy rate. However, such results do not reveal
how effectively these algorithms exploit the grammar-
model itself; that is, are the compressed strings pro-
duced as small as possible? We address this issue
by analyzing the approximation ratio of several algo-
rithms, that is, the maximum ratio between the size of
the generated grammar and the smallest possible gram-
mar over all inputs. On the negative side, we show
that every polynomial-time grammar-compression al-
gorithm has approximation ratio at least 8569

8568 unless
P = NP. Moreover, achieving an approximation ratio
of o(log n/ log log n) would require progress on an alge-
braic problem in a well-studied area. We then upper
and lower bound approximation ratios for the follow-
ing four previously-proposed grammar-based compres-
sion algorithms: Sequential, Bisection, Greedy,
and LZ78, each of which employs a distinct approach to
compression. These results seem to indicate that there
is much room to improve grammar-based compression
algorithms.

1 Introduction

Grammar-based data compression aims to succinctly
represent an input string by a context-free grammar
generating only that string. For example, one might
represent the string:

abcabccabcabcbcabccabacabbbcabcc
ababcabccabcabcbcabccabacabcaba

by the context-free grammar:

S → TbUTV a

T → aUV cUaV

U → bV cV

V → cab

This grammar can then be translated into a bit string
using a standard technique such as arithmetic encod-
ing. Grammar-based data compression was first pro-
posed explicitly by Kieffer and Yang [6] and Nevill-
Manning [9], but is closely related to some earlier
“macro-based” schemes proposed by Storer [10].

In addition to achieving competitive compression
rates [1, 7, 9], grammar-based algorithms are attractive
for several reasons. A string encoded as a grammar
remains relatively comprehensible in compressed form.
This eases implementation of algorithms such as pattern
matching that operate directly on the compressed form
for efficiency. Furthermore, this comprehensibility al-
lows one to use grammar-based compression to extract
information about patterns in the original string. For
example, grammar-based compression has been used to
identify patterns in DNA sequences, English text, and
musical scores [9].

Several grammar-based compression algorithms
have been proposed. Nevill-Manning [9] devised the Se-

quitur algorithm which incrementally builds a gram-
mar in a single pass through the input string. This
procedure was subsequently improved by Kieffer and
Yang [6] to what we refer to here as the Sequential

algorithm. The same authors employed a completely
different approach to generating a compact grammar
for a given string in their Bisection algorithm. This
procedure partitions the input into halves, then quar-
ters, then eighths, etc. and creates a nonterminal in
the grammar for each distinct substring generated in
this way. Bisection was subsequently generalized to
MPM [7] in order to exploit multi-way and incomplete
partitioning. De Marcken [4] presented a complex multi-

1

pass algorithm that emphasizes avoiding local minima.
Apostolico and Lonardi [1] proposed a greedy algorithm
(hereafter called Greedy) in which rules are added in
a steepest-descent fashion. Finally, even though it pre-
dates the idea of grammar-based compression, the out-
put of the well-known LZ78 algorithm [14] can also be
interpreted as a grammar. (In contrast, the output of
LZ77 [13] has no natural interpretation as a grammar.)

Traditional analysis of a compression algorithm first
concentrates on showing that the algorithm is universal
with respect to stationary ergodic sources; that is,
it asymptotically approaches the optimal compression
rate. Then, as a refinement, one might bound the
redundancy, which measures how quickly an algorithm
approaches that optimum. All of the above algorithms
except for Sequitur and de Marcken’s are known to be
universal.

We measure grammar-based compression algo-
rithms by a simpler standard: how large is the output
grammar relative to the smallest grammar? More pre-
cisely, a grammar-based compression algorithm has ap-
proximation ratio ρ(n) if for every input string of length
n, the algorithm outputs a grammar at most ρ(n) times
larger than the smallest grammar for that string. Here
the size of a grammar is defined to be the total number
of symbols on the right sides of all rules. One might
prefer to define the size of a grammar to be the length
of its encoding in bits, since this is the ultimate measure
of compression. However, our coarser definition has the
merit of simplicity, and its imprecision is dwarfed by the
approximation ratios of the algorithms we analyze.

At a high level, studying approximation ratios gives
insight into how fully one can exploit the grammar
model of compression. Fully exploiting a simple com-
pression model, such as run-length encoding, is easy.
On the other hand, it is impossible to make full use of
a powerful model in which a string is represented by an
encoding of a Turing machine that prints it. At a prac-
tical level, approximation ratio analysis allows one to
differentiate between grammar-based compressors with
no assumptions about the source of input. (After all,
many files compressed in practice are not generated by
stationary ergodic sources.) From a theoretical perspec-
tive, grammar-based compression is an elegant combi-
natorial optimization problem. Context-free grammars
are fundamental to computer science, but have rarely
been studied from an optimization perspective. Fur-
thermore, this extends the study of approximation al-
gorithms to hierarchical objects (grammars) as opposed
to “flat” objects (graphs, CNF-formulas, etc.) This is a
significant shift since many real-world problems have a
hierarchical nature, but standard approximation tech-
niques such as linear and semidefinite programming are

not easily applied to this new domain.
We begin by showing that the grammar model

of compression can not be exploited to the absolute
maximum: every polynomial-time algorithm has ap-
proximation ratio at least 8569

8568 unless P = NP. We
also show that achieving an approximation ratio of
o(log n/ log log n) will require progress on an algebraic
problem in a well-studied area. We then switch to an-
alyzing upper and lower bounds on the approximation
ratios for a variety of previously-proposed compressors.
Our results are summarized in the table below. Here n
is the length of the input string.

Approximation Ratio
Algorithm Upper Bound Lower Bound

LZW O((n/ log n)2/3) Ω(n2/3/ log n)
Bisection O((n/ log n)1/2) Ω(n1/2/ log n)
Sequential O((n/ log n)3/4) Ω(n1/3)
Greedy O((n/ log n)2/3) > 1.37 . . .

The bounds for LZ78 hold for some variants, including
LZW [11]. Results for MPM mirror those for Bisec-

tion. The lower bound for Sequential also holds for
Sequitur. We were unable to analyze de Marcken’s
algorithm.

While significant uncertainties remain, the startling
result is that not one of the most-studied grammar-
based compressors has a good approximation ratio. The
best proved approximation ratio is O(

√
n/ log n) for

Bisection. Only the Greedy algorithm holds promise
of being much better. On the other hand, the difficulties
that trip up the other algorithms do not look at all
fundamental. There seems to be much potential for
progress in this area.

2 Preliminaries

A grammar G is a 4-tuple (Σ,Γ, S,∆). Here Σ is a finite
alphabet whose elements are called terminals, Γ is a
disjoint set whose elements are called nonterminals, and
S ∈ Γ is a special nonterminal called the start symbol.
All other nonterminals are called secondary. In general,
the word symbol refers to any terminal or nonterminal.
In this paper, terminals are lowercase, nonterminals are
uppercase, and strings of symbols are lowercase Greek.
We always use σ to denote the input string, n = |σ| for
its length, m for the size of a particular grammar for σ,
and m∗ for the size of the smallest grammar.

The last component of a grammar is a set of rules
∆ of the form T → α, where T ∈ Γ is a nonterminal
and α ∈ (Σ ∪ Γ)∗ is a string of symbols referred to
as the definition of T . In the grammars we consider,
each nonterminal T has exactly one rule T → α in ∆.
Furthermore, all grammars are acyclic; that is, there

2

exists an ordering of the nonterminals Γ such that each
nonterminal precedes all nonterminals in its definition.
These properties guarantee that a grammar accepts
exactly one finite-length string.

The expansion of a string of symbols α is obtained
by iteratively replacing each nonterminal in α by its
definition until only terminals remain. In particular,
the string represented by a grammar is the expansion of
its start symbol. The size of a grammar G is the total
number of symbols in all definitions:

∑
T→α ∈ ∆

|α|

Note that a grammar of size m can be encoded using
O(m logm) bits in a straightforward way. This obser-
vation bounds the imprecision introduced by our use of
grammar size as a measure of compression performance.

Finally, we use several notational conventions to
compactly express strings. The symbol | represents a
terminal that appears only once in a string. When | is
used several times in the same string, each appearance
represents a different symbol. For example, a | bb | cc
contains five distinct symbols. Product notation is
used to indicate repetition, and parentheses are used
for grouping. For example (ab)5 = ababababab and∏3
i=1 ab

i | = ab | abb | abbb |.

3 Hardness

We establish the hardness of the grammar compression
problem in two ways. First, we show that approximat-
ing the size of the smallest grammar to within a small
constant factor is NP-hard.

Theorem 3.1. There is no polynomial-time grammar-
based compressor with approximation ratio less than
8569
8568 unless P = NP.

Proof. We use a reduction from a restricted form of
vertex cover based closely on an argument by Storer [10].
Let G = (V,E) be a graph with maximum degree three.
Map this graph to the following string over an alphabet
that includes a symbol corresponding to each vertex
vi ∈ V :

∏
vi∈V

(#vi | vi# |)2
∏
vi∈V

#vi# |
∏

(vi,vj)∈E

#vi#vj# |

This string has length 16|V |+6|E|, and the smallest
grammar for it has size 15|V |+ 3|E|+ k, where k is the
size of the minimum vertex cover ofG. (A minimum-size
grammar may as well contain rules for all strings of the

form #vi and vi#. The set of all strings #vi# for which
there are rules defines a vertex cover of G.) However,
the minimum vertex cover for this restricted family of
graphs is known to be hard to approximate below a
ratio of 145/144 [2], and so it is hard to approximate
the smallest grammar for this string below the claimed
threshold. �

Now we demonstrate the hardness of grammar-
based data compression in an alternative sense: a
compressor with a low approximation ratio would imply
progress on an apparently difficult algebraic problem in
a well-studied area.

Let x be a real number, and let k1, k2, . . . , kp be
positive integers. How many multiplications are re-
quired to compute xk1 , xk2 , . . . , xkp? (Algorithms that
use other operations are ruled out. Thus, more pre-
cisely, what is the shortest addition chain containing all
of k1, k2, . . . , kp? The theory of addition chains is ex-
tensive [8].) This problem is known to be NP-hard if the
integers ki are given in binary [5]. However, even if they
are written in unary, apparently no polynomial-time al-
gorithm with approximation ratio o(log n/ log log n) is
known, where n =

∑
ki. The following theorem states

that improving the approximation ratio for grammar-
based compression beyond this threshold is at least as
difficult.

Theorem 3.2. Let T = {k1, . . . kp} be a set of distinct
positive integers, and define

σ = xk1 | xk2 | . . . | xkp .

Then the following relationship holds, where l∗ is the
minimum number of multiplications required to compute
all of xk1 , xk2 , . . . , xkp , and m∗ is the size of the smallest
grammar for string σ:

l∗ ≤ m∗ ≤ 4l∗

The idea of the proof is that a grammar for σ can
be read as an algorithm for computing xk1 , xk2 , . . . , xkp

and vice-versa.

4 Approximation Algorithms

In this section, we establish upper and lower bounds on
the approximation ratios of four grammar-based data
compression algorithms: LZ78, Bisection, Sequen-

tial, and Greedy.

4.1 LZ78
The well-known LZ78 [14] algorithm can be re-

garded as a grammar-based compressor. The procedure

3

works as follows. Begin with an empty grammar. Make
a single left-to-right pass through the input string. At
each step, find the shortest prefix of the unprocessed
portion that is not the expansion of a secondary non-
terminal. This prefix is either a single terminal a or else
expressible as Xa where X is an existing nonterminal
and a is a terminal. Define a new nonterminal, either
Y → a or Y → Xa, and append this new nonterminal
to the end of the start rule.

For example, on input 001010110101011011111,
LZ78 defines secondary rules as follows:

X1 → 0 X4 → 1 X7 → X21
X2 → X11 X5 → X40 X8 → X71
X3 → X20 X6 → X51 X9 → X41

The start rule is S → X1X2X3X4X5X6X7X8X9.
The next two theorems provide closely-matching

upper and lower bounds on the approximation ratio of
LZ78.

Theorem 4.1. The approximation ratio of LZ78 is
Ω(n2/3/ log(n)).

Proof. Consider the input string: 0k(k+1)/21(0k1)(k+1)2
.

LZ78 first generates nonterminals with expansions
0, 00, . . . , 0k, and then nonterminals with expansions of
the form 0i10j for all 0 ≤ i, j ≤ k. Therefore, the size of
the grammar produced by LZ78 is Ω(k2), while there
exists a grammar of size O(log k). The theorem follows
since k = Θ(n1/3). �

The upper bound on the approximation ratio for
LZ78 relies on the following fundamental lemma that
relates the complexity of a string to the size of its
grammar.

Lemma 4.1. If a string σ has a grammar of size m,
then σ contains at most ml distinct substrings of length
l.

Proof. Let G be a grammar for σ of size m. We will
first construct a set Ω consisting at most ml string of
length l. Then we prove that every length-l substring
of σ is a member of this set. For each rule A→ α in G,
add the following strings to Ω:

1. For each terminal in α, add the length l string in
the expansion of α which begins at this terminal.

2. For each nonterminal in α, add the l − 1 strings
of length l in the expansion of α that begin with
between 1 and l − 1 characters in the expansion of
the nonterminal.

In order to bound the size of Ω, note that we add
at most l − 1 strings to Ω for each character in α.
There are at most m characters in all of the rules in G.
Therefore, summing over all of the rules in G implies
that |Ω| ≤ m(l − 1) < ml.

Now let s be an arbitrary length-l substring of σ.
In order to prove that s ∈ Ω, order the rules of G
by increasing expansion length and find the first rule
whose expansion entirely contains s. Within this rule, s
either begins at a terminal or inside the expansion of a
nonterminal. In the former case, Ω will contain s. In the
latter case, since s was too big to fit entirely within this
smaller nonterminal, it must be the case that s has only
between 1 and l − 1 symbols within the nonterminal’s
expansion. Therefore, s is again in Ω.�

Theorem 4.2. The approximation ratio of LZ78 is
O
(
(n/ log n)2/3

)
.

Proof. Let m∗ be the size of the smallest grammar for
input string σ of length n, and let S → X1X2 . . . Xm

be the start rule generated by LZ78. Note that the
size of the LZ78 grammar is at most 3m since every
other nonterminal is defined by a rule of the form
Xi → Xjα or simply Xi → α. Hence, it suffices
to upper bound m. By the definition of LZ78, each
nonterminal Xi expands to a distinct string and is used
exactly once in the start rule. List these nonterminals
Xi by increasing expansion length. Lemma 4.1 states
that a string representable by a small grammar contains
few distinct, short substrings. In particular, the lemma
implies that each nonterminal among the first group
of m∗ in this list has an expansion with length at
least 1, each nonterminal in the next group of 2m∗

has an expansion with length at least 2, and so forth.
Suppose that after repeating this argument k times, not
enough nonterminals remain in the list to form another
complete group; that is:

m < m∗ + 2m∗ + 3m∗ + · · ·+ km∗ + (k + 1)m∗

This implies that m = O(k2m∗). On the other hand,
the sum of the expansion lengths of all the grouped
nonterminals is at most n:

m∗ + 2 · 2m∗ + 3 · 3m∗ + · · ·+ k · km∗ ≤ n

This implies that k = O((n/m∗)1/3). Substituting
gives m = O((n/m∗)2/3m∗). Finally, noting that
m∗ is Ω(log n) for every input string gives m =
O(((n/ log n)2/3m∗) from which the theorem follows. �

4

4.2 The Bisection Algorithm
Kieffer and Yang introduced the Bisection algo-

rithm in [7]. This procedure works on an input string
σ as follows. Select the largest integer k such that
2k < |σ|. Partition σ into two substrings with lengths
2k and |σ| − 2k. Repeat this partitioning process re-
cursively on each substring of length greater than one.
Create a nonterminal for every distinct string of length
greater than one generated during this process. Each
such nonterminal can then be defined by a rule with
exactly two symbols on the right.

As an example, consider the string σ =
1110111010011. The recursive partitioning and asso-
ciation of a nonterminal with each distinct substring
generated is shown below:

1110111010011︸ ︷︷ ︸
S→T1T2

11101110︸ ︷︷ ︸
T1→U1U1

10011︸ ︷︷ ︸
T2→U21

1110︸︷︷︸
U1→V1V2

1110 1001︸︷︷︸
U2→V2V3

1

11︸︷︷︸
V1

10︸︷︷︸
V2

11 10 10 01︸︷︷︸
V3

1

Theorem 4.3. The approximation ratio of Bisection

is O(
√
n/ log n) and Ω(

√
n/ log n).

Proof. For the lower bound, let σ be the string
1(02k1)2k−1, which has total length n = 22k. For ex-
ample, if k = 2, then σ is 1000 0100 0010 0001. Bi-
secting σ k times gives 2k distinct substrings of length
2k, thereby generating a grammar of size Ω(2k). Since
there is a grammar of size O(k) for σ, Bisection has
an approximation ratio of Ω

(
2k

k

)
= Ω

(√
n

logn

)
.

For the upper bound, let σ be an arbitrary string,
let G be Bisection’s grammar for σ, and let m∗ be the
size of the smallest grammar for σ. The size of G is at
most twice the number of distinct substrings generated
during the recursive partitioning process, so it suffices
to upper bound the latter quantity. Let k be the largest
integer such that 2k < |σ|. Then this process generates
bn/2ic strings of length 2i for 1 ≤ i ≤ k together with
up to k additional strings of various lengths. Using
Lemma 4.1 for a better bound on the number of distinct,
short strings, we obtain the following upper bound on
the size of the Bisection grammar:

|G| = O

k +

1
2 (k−log k)∑

i=1

m∗2i +
k∑

i= 1
2 (k−log k)

⌊ n
2i
⌋

= O(log n) +O

(
m∗
√

n

log n

)
+O

(√
n log n

)
= O

(
m∗
√

n

log n

)
�

Bisection was generalized to an algorithm called
MPM [7], which permits the recursive partitioning to
split more than two ways and to terminate early. For
reasonable parameters, performance bounds are the
same as for Bisection.

4.3 Sequential Algorithm
Nevill-Manning and Witten introduced the Se-

quitur grammar compression algorithm in [9]. Kief-
fer and Yang [6] subsequently offered an improved algo-
rithm, which we refer to here as Sequential. Sequen-

tial works as follows. Begin with an empty grammar,
and make a single left-to-right pass through the input
string. At each step, find the longest prefix of the unpro-
cessed portion of the input that matches the expansion
of a secondary nonterminal, and append that nontermi-
nal to the start rule. Otherwise, if no prefix matches
the expansion of a secondary nonterminal, append the
first terminal in the unprocessed portion to the start
rule. In either case, if the last pair of symbols in the
start rule already occurs at some non-overlapping posi-
tion in the grammar, then replace both occurrences by a
new nonterminal whose definition is that pair. Finally,
if some nonterminal is used only once after this substi-
tution, then replace it by its definition, and delete the
corresponding rule.

As an example, consider the input string σ = x |
xx | xxxx | xxxxxxxx. In each of the first six steps,
a single terminal is appended to the start rule, and the
grammar becomes S → x | xx | x. No secondary rules
have been created, because every non-overlapping pair
of symbols occurs only once in this prefix. However,
when the next x is appended to the start rule, there
are two copies of the substring xx. Therefore the
rule R1 → xx is added to the grammar, and both
occurrences of xx are replaced by R1. The grammar
is now:

S → x | R1 | R1

R1 → xx

Because the expansion of R1 is now a prefix of the
unprocessed part of σ, the next step consumes xx and

5

appends R1 to S. During the next few steps, the start
rule expands to S → x | R1 | R1R1 | R1R1. At this
point, the pair R1R1 appears twice, and so a new rule
is R2 → R1R1 is added and applied. Sequential

eventually produces the following grammar for σ:

S → x | R1 | R2 | R2R2

R1 → xx
R2 → R1R1

Theorem 4.4. The approximation ratio of Sequen-

tial is Ω(n1/3).

Proof. The idea is to exploit Sequential’s tendency
to match the longest rule in order to persuade it to
represent the same string in many different ways. Define
δi to be the string 0i10k−i. Consider the input string
α | βk/2 where

α = 0k | 0k | δ0 | δ0 | δ1 | δ1 | . . . | δk | δk
β = δkδk δkδk−1 δkδk−2 δkδk−3 . . . δkδk/2 0k−1

After α is processed, the grammar contains a non-
terminal for 0k, a nonterminal for each string δi, and
other nonterminals for shorter strings that will never
be used again. The first copy of β is parsed as the
string is written above. However, the final 0k−1 is com-
bined with the leading zero in the second copy of β and
read as a single nonterminal. With this leading zero
already processed, Sequential parses the second copy
of β completely differently:

δk−1δk−1 δk−1δk−2 δk−1δk−3 . . . δk−1δk/2−1 0k−2

Now the final 0k−2 is combined with the two leading
zeroes in the third copy of β and read as a single
nonterminal. Consequently, Sequential parses the
third copy of β in yet another way. In general, each
copy of β adds k symbols to the start rule. No pair
of nonterminals appears twice, and so no new rules
are created. Since there are k/2 copies of β, the final
grammar has size Ω(k2). However, there is a succinct
grammar for this string of size Θ(k). The theorem
follows since k = Θ(n1/3). �

To upper bound Sequential’s performance, we
rely on a property of Sequential’s output. Kieffer and
Yang [7] show that Sequential produces an irreducible
grammar; that is, one in which (1) all non-overlapping
pairs of symbols are distinct, (2) every nonterminal
appears at least twice, and (3) no two distinct symbols
have the same expansion. The upper bound on the
approximation ratio of Sequential is a corollary of the
following theorem.

Theorem 4.5. Every irreducible grammar for a string
is O((n/ log n)3/4) times larger than the smallest gram-
mar for that string.

Proof. Let σ be a string of length n, and letG be an irre-
ducible grammar of size m for σ. Each non-overlapping
pair of symbols in G represents some substring of σ.
Since G is irreducible, two pairs of symbols in G can
represent the same substring only if they partition that
substring in different ways. A string of length l can be
partitioned in at most l − 1 ways. Using Lemma 4.1,
we conclude that at most (l− 1)lm∗ pairs of symbols in
G represent substrings of length l in σ. Moreover, the
total length of all expansions of these pairs is at least
(l − 1)l2m∗.

One can see that there exist at least m/3 non-
overlapping pairs of adjacent symbols in G. As in the
proof of Theorem 4.2, we list these pairs by increasing
expansion length. From the argument above, each pair
among the first group of 2(2 − 1)m∗ in the list has
expansion length of at least 2. Similarly, each pair
among the next 2 · 3m∗ has an expansion of length at
least 3. Continue to group these pairs into sets of size
3 ·4m∗, . . . , (k−1)km∗ until there are not enough pairs
to form the next group. At this point, we know that

2m∗ + 2 · 3m∗ + · · ·+ (k − 1) · km∗ ≤ m/3

Therefore, m = O(k3m∗).
By Lemma 9.33 in [6], the expansions of all rules in

the irreducible grammar G have a combined length at
most 2n. Therefore

2 · 2(1)m∗ + 3 · 3(2)m∗ + · · ·+ k · k(k − 1)m∗ ≤ 2n

This inequality implies that k = O
(
(n
m∗)1/4

)
.

Substituting into the first bound gives m =
O((n/m∗)3/4m∗). The theorem follows since m∗ =
Ω(log n). �

Unfortunately, analyzing the properties of irre-
ducible grammars is not sufficient to substantially im-
prove this upper bound, because there exists an irre-
ducible grammar of size Ω(n2/3) even for the string an.
Thus, substantially improving this upper bound will re-
quire detailed analysis of the inner workings of Sequen-

tial. However, one need only consider binary strings;
a string over a large alphabet can always be mapped to
a string over the binary alphabet such that the approx-
imation ratio changes by only about a logn factor.

4.4 Greedy
Apostolico and Lonardi [1] considered greedy algo-

rithms for grammar-based data compression. Their idea

6

is to begin with a grammar where the definition of the
start symbol is the entire input string. Then one re-
peatedly adds the rule that decreases the size of the
grammar as much as possible. Each rule is added by
making a pass through the string from left to right and
replacing each occurrence of the definition of the rule by
its nonterminal. Greedy terminates when no rule can
be added without enlarging the grammar. For example,
one might begin with the grammar:

S → 111111100000011101111

Greedy first adds T → 111, since this rule decreases
the size of the grammar as much as possible:

S → TT1000000T0T1
T → 111

The rules U → 000 and V → T1 are added in turn, and
the final grammar is:

S → TV UUT0V U → 000
T → 111 V → T1

Theorem 4.6. The approximation ratio for Greedy

is O((n/ log n)2/3) and not less than 5 log 3
3 log 5 = 1.137

The upper bound argument is similar to the one for
Sequential. A detailed proof that Greedy produces
an irreducible grammar is presented in the full version of
this paper. However, we can also show that grammars
produced by Greedy are such that no non-overlapping
pairs of adjacent symbols can expand to the same string.
As a consequence, we can extract at least m/3 non-
overlapping pairs of adjacent symbols, all with distinct
expansions. In the analysis of Sequential we could
only assume that for a pair with an expansion of length
k, there were at most k − 1 other pairs with the same
expansion. This extra fact allows us to tighten the
argument.

For the lower bound, we analyze how Greedy

handles an input string σ that consists of 52k copies
of the same symbol. Greedy creates a grammar of
size 5 · 2k. Roughly, Greedy creates nonterminals for
x5i for all 1 ≤ i ≤ 2k. However, asymptotically it is
more efficient to create nonterminals for x3i for all 1 ≤
i ≤ 2k log3 5 and then to exploit these to form σ using
an insignificant number of additional symbols. More
precisely, one can show that there exists a grammar of
size (3 log3 5 + o(1)) · 2k. The 1.137 . . . lower bound
follows.

5 Conclusion

The present work only scratches the surface of this
area. The problem of designing a time and space
efficient grammar-based compression algorithm with
provably good approximation ratio is both theoretically
fascinating and practically motivated.

Beyond this, there are many natural hierarchical
optimization problems in the same vein. For example,
one can imagine a grammar-like scheme for compressing
images in which nonterminals represent rectangular sub-
images. There is also a circuit design problem in which a
set of input signals together with a collection of subsets
of the signals is specified. The problem is to determine
the smallest circuit consisting entirely of AND gates
that computes the AND of each subset of input signals
in the collection. As far as we know, both of these
problems are open.

The authors would like to thank Madhu Sudan and
Mohammad Mahdian for helpful discussions and Yev-
geniy Dodis and Amit Sahai for suggesting the approx-
imation perspective on grammar-based compression.

References

[1] A. Apostolico and S. Lonardi. Some Theory and Prac-
tice of Greedy Off-Line Textual Substitution. DCC
1998, pp 119-128.

[2] P. Berman and M. Karpinski. On Some Tighter Inap-
proximability Results, Further Improvements. ECCC
1998.

[3] D. Bleichenbacher. Efficiency and Security of Cryp-
tosystems Based on Number Theory. PhD thesis, Swiss
Federal Institute of Technology, 1996.

[4] C. de Marcken. The Unsupervised Acquisition of a
Lexicon from Continuous Speech. MIT AI Memo 1558.
November 1995.

[5] P. Downey, B. Leong, and R. Sethi. Computing Se-
quences with Addition Chains. SIAM Journal on Com-
puting, 10(3):638–646, August 1981.

[6] J. C. Kieffer and E. Yang. Grammar-Based Codes: a
New Class of Universal Lossless Source Codes. IEEE
Transactions on Information Theory, vol. 46 (2000), pp.
737–754.

[7] J. C. Kieffer, E. Yang, G. J. Nelson, P. Cosman.
Universal Lossless Compression via Multilevel Pattern
Matching. IEEE Transactions on Information Theory,
vol. 46 (2000), pp. 1227–1245.

[8] D. Knuth. Seminumerical Algorithms. Addison-Wesley,
1981, pp. 441–462.

[9] C. Nevill-Manning. Inferring Sequential Structure. PhD
thesis, University of Waikato, 1996.

[10] J. Storer. Data Compression: Methods and Complexity
Issues. PhD Thesis, Princeton University, 1979.

[11] T. A. Welch. A Technique for High Performance Data
Compression. IEEE Computer, vol. 17 (June 1984), pp.
8–19.

7

[12] E. Yang and J. C. Kieffer. Efficient Universal Lossless
Data Compression Algorithms Based on a Greedy
Sequential Grammar Transform. IEEE Transactions on
Information Theory, vol. 46 (2000), pp. 755–777.

[13] J. Ziv and A. Lempel. A Universal Algorithm for
Sequential Data Compression. IEEE Transactions on
Information Theory, vol. 23 (1977), pp. 337–343.

[14] J. Ziv and A. Lempel. Compression of Individual Se-
quences via Variable-Rate Coding. IEEE Transactions
on Information Theory, vol. 24 (1978), pp. 530–536.

8

